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Two-Point Mixture Index of Fit

Let P be the “true” distribution for the cell proportions in a frequency 
table. Rudas, Clogg and Lindsay (1994) {RCL hereafter} propose a two-
point mixture model:

[1]
where  

=  probability distribution implied by probabilistic model, H

= an arbitrary, unspecified probability distribution

=  proportion of the population not consistent with H

(1 )P π π= − ⋅Φ+ ⋅Ψ

Φ

Ψ

0 1π≤ ≤
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Comparison with Chi-Square Statistic

For the two-point mixture model, the “expected” proportions,  
associated with H are always equal to or less than corresponding
observed proportions [        ] and, of course, the same is true for expected 
and observed frequencies.

Note that this representation is different than the usual “fit” and 
“lack-of-fit” components associated with chi-square goodness-of-fit 
procedures.  For example, for a two-way frequency table, let Eij represent 
theoretical expected frequencies based on, say, an independence model. 
In general, Eij may be less than, equal to or greater than the 
corresponding observed value, Oij . 

îj ijP P≤
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Definition of the Fit Index

in Equation [1] is not unique and the equation is true, de facto, for 
any model for any frequency table. 

2210A2

3015A1

B2B1

11A2

11A1

B2B1

π

For independence hypothesis, 
delete 2 from cell A2B2

But this table omitting 73 cases also
fits independence hypothesis
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Definition of the Fit Index – Cont’d

The index of fit, , is defined as the smallest value of      for which 
the representation in Equation [1] holds:

can be interpreted as the minimum proportion of cases that must be 
omitted from the frequency table in order to provide perfect fit to the 
remaining data.

π

* inf{ | (1 ) , }P Hπ π π π= = − ⋅Φ+ ⋅Ψ Φ∈

*π

*π



Dayton

4CILVR Conference 2006

May 2006  CILVR Conference 7

Properties of the Fit Index

is unique

is defined on the 0,1 interval

For nested models,     has the property of decreasing (actually,
never increasing) in magnitude for increasingly more complex 
models

*π

*π

*π

*π is invariant if frequencies are increased/decreased 
by an arbitrary multiplicative factor
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2210A2

3015A1

B2B1

dcA2

baA1

B2B1

*

*

-ˆIf ,  then  for independence

and the expected cell frequencies for the model are { , , , / }

15 22-30 10 30 2ˆE. g.,  .026
15 77 1155 77

ad bcad bc
an

a b c bc a

π

π

> =

× ×
= = = =

×

Estimation for 2x2 Table
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Estimating *π

MLE: A method suggested by RCL entrails a guided search that, at each step, 
sets the value of      and derives maximum likelihood estimates (MLE’s) of 
the parameters in the components of Equation (1) using an EM algorithm. 
The process can start with a small value (e.g., .005) and increment by a small 
constant (e.g., .005) with re-estimation at each step. At some step (and beyond), 
the value of the likelihood-ratio chi-square fit statistic, G2, becomes (nearly) 0 and 
this is the final estimate of the fit index. See RCL for details.

*π

NLP: Non-linear programming is a directed-search technique first recommended
by Xi (1994) and Xi & Lindsay (1996). For relatively simple applications, the 
SOLVER procedure in Excel (with some tweaking) can be used as illustrated in
this presentation (see Dayton, 2002, for details). NLP routines are available in
SAS, Gauss, etc.
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Provide start values for the parameters             and include the 
sum of expected frequencies,                 as a parameter for the 
NLP algorithm. 

{ }mθ θ=
*

1

J
j

j
n N

=
≤∑

NLP Computing Steps for Frequency Data

Define expected frequencies for the cells of the frequency 
table using the model, H, based on   . θ

Impose the restrictions           for all j; in addition, impose
relevant restrictions on the parameters (e.g., non-negativity); in 
Microsoft Excel Solver, these are termed Constraints.

*
j jn n≤
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Define the objective function to be maximized as the sum of the

expected frequencies,           ; in Microsoft Excel Solver, this is

called the Target Cell; at convergence of the NLP algorithm, 

*
1

J
j

j
n

=
∑

* *
1

1 /ˆ
J

j
j

n Nπ
=

= −∑

NOTE: These steps can be implemented using, for example, Excel 
Solver or Gauss sqpsolve routine. See Dayton (1999, 2002) for 
more details.

NLP Computing Steps for Frequency Data – cont’d
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Estimating a Lower Bound for the Two-Point Mixture Index

The estimate,    , is subject to random fluctuation due to the peculiarities 
of sample data. In general,       may overestimate lack of fit. RCL derived 
a lower confidence bound,      , based on a       fit statistic equal to 2.70 
(i.e., the 90th percentage point of the chi-square distribution with one 
degree of freedom). Their program, Mixit, can be used to find the lower 
limit by the same iterative procedure used to compute    . The confidence 
interval is one-sided since all values of    greater than     yield models of 
the form of equation [1] that fit the observed frequencies perfectly (i.e.,

if           ). For more general data situations than those that can be 
fit by Mixit, the standard error of       can be estimated using re-sampling 
techniques (e.g., the jackknife; see Dayton, 1999, Dayton 2002 ). Clogg, 
Rudas & Xi (1995) suggest that the difference,           , provides a 
measure of the effect of sample size on the estimator, .*π̂

*π̂

ˆLπ 2G

π̂

*π̂

2 0G = *ˆ ˆπ π>

*π̂

*ˆ ˆLπ π−

*π̂

*π̂
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Guidelines (?)

There is no general guideline for interpreting the two-point 
mixture index but, intuitively, values of 10% to 5% or less seem
small. RCL remark that 10% is “reasonable” for a specific 4x4 
cross-classification table but there is no absolute standard for the 
index that represents acceptable fit in all settings. In particular, 10% 
for the first example in the RCL paper represents only about 59 
respondents whereas it represents about 2526 respondents for their 
second example. 
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Note on 0 Observed Frequencies 
 
 Fr an independence model in a two-way contingency 
table, the existence of a 0 observed frequency in a cell 
requires that a corresponding row or column proportion be 
equation to 0. In effect, this creates 0 expected frequencies 
for the entire row or column. Among the approaches for 
avoiding this undesirable result are: (a) replace 0 cell 
frequencies with small, flattening values (e.g., .1 or .5); or, 
(b) treat the 0 as a structural 0 and explicitly model the 
structure.  
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First Example:

Number of Siblings
GSS self report
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# Sibs Count Poisson1 Prop
0 74 0.0213 0.0492
1 235 0.0819 0.1561
2 276 0.1577 0.1834
3 237 0.2024 0.1575
4 209 0.1948 0.1389
5 118 0.1500 0.0784
6 80 0.0962 0.0532
7 81 0.0529 0.0538
8 58 0.0255 0.0385
9 47 0.0109 0.0312

10 34 0.0042 0.0226
11 22 0.0015 0.0146
12 11 0.0005 0.0073
13 9 0.0001 0.0060
14 5 0.0000 0.0033
15 3 0.0000 0.0020
16 1 0.0000 0.0007
17 2 0.0000 0.0013
18 1 0.0000 0.0007
19 0 0.0000 0.0000
20 0 0.0000 0.0000
21 1 0.0000 0.0007
22 0 0.0000 0.0000
23 0 0.0000 0.0000
24 0 0.0000 0.0000
25 0 0.0000 0.0000
26 1 0.0000 0.0007

1505 1.0000

GSS Sibling Data - Single Poisson

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30

( )
!

y eP y
y

λλ −⋅
= where λ is the rate parameter;

estimated as the mean of y (3.93)

Observed

Fitted
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# Sibs Freq Prop E(Prop) E(Freq) E(Prop) E(Freq)
0 74 0.049 0.020 29.56 0.069 74.00
1 235 0.156 0.077 116.19 0.184 198.21
2 276 0.183 0.152 228.30 0.246 265.45
3 237 0.157 0.199 299.08 0.220 237.00
4 209 0.139 0.195 293.84 0.147 158.70
5 118 0.078 0.153 230.96 0.079 85.02
6 80 0.053 0.101 151.28 0.035 37.95
7 81 0.054 0.056 84.93 0.014 14.52
8 58 0.039 0.028 41.72 0.005 4.86
9 47 0.031 0.012 18.22 0.001 1.45

10 34 0.023 0.005 7.16 0.000 0.39
11+ 56 0.037 0.002 3.74 0.000 0.12

1505 1.000 1.000 1505.00 1.000 1077.66
G2 = 586.962 0.284 0.221

λ = 3.93 λ = 2.68

Two-Point Mixture

GSS Number of Siblings Data
Single Poisson Process

     Observed     Single Poisson

*π̂ =
*ˆLπ =
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Jackknife SE
# Sibs Count Prop PoissP* E(Freq) J(π*) Wt(SS)

0 74 0.049 0.069 74.00 0.2845 2.22E-05
1 235 0.156 0.184 198.21 0.2835 5.33E-05
2 276 0.183 0.246 265.45 0.2835 6.26E-05
3 237 0.157 0.220 237.00 0.2862 0.00117
4 209 0.139 0.147 158.70 0.2835 4.74E-05
5 118 0.078 0.079 85.02 0.2835 2.67E-05
6 80 0.053 0.035 37.95 0.2835 1.81E-05
7 81 0.054 0.013 14.52 0.2835 1.84E-05
8 58 0.039 0.005 4.86 0.2835 1.31E-05
9 47 0.031 0.001 1.45 0.2835 1.07E-05

10 34 0.023 0.000 0.39 0.2835 7.71E-06
11+ 56 0.037 0.000 0.12 0.2835 1.27E-05

1505 1.000 1.000 1077.66 0.00146 = VAR(J)
π* = 0.2839 0.0382 = SE(J)
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GSS Sibling Data - Single Poisson

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30

Obs Prop Poisson Pi* Poisson
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GSS Sibling Data - Mixture 2 Poissons

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0 10 20 30

1 22.64{.75} 7.81{.25}λ λ= =
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# Sibs Freq Prop E(Prop) E(Freq) E(Prop) E(Freq)
0 74 0.049 0.054 80.70 0.054 74.00
1 235 0.156 0.142 213.84 0.142 195.76
2 276 0.183 0.190 285.35 0.189 260.94
3 237 0.157 0.172 259.13 0.172 236.99
4 209 0.139 0.124 186.69 0.124 171.21
5 118 0.078 0.082 123.04 0.082 113.58
6 80 0.053 0.057 85.98 0.058 80.00
7 81 0.054 0.045 67.96 0.046 63.42
8 58 0.039 0.038 57.11 0.038 53.11
9 47 0.031 0.031 46.85 0.031 43.25

10 34 0.023 0.024 35.88 0.024 32.84
11+ 56 0.037 0.042 62.46 0.041 56.00

1505 1.000 1.000 1505.00 1.000 1381.09
G2 = 11.221 π* = 0.081 π*L = 0.019

λ =   2.64, 7.81 λ =   2.63, 7.74
θ =   .75, .25 θ =   .75, .25

GSS Number of Siblings Data
Mixture of Two Poissons

     Observed     Mixture 2 Poissons Two-Point Mixture
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Second Example:

Maryland MSPAP Data
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MSPAP π* for 3LCA Model
Standard LCA π* Solution

A B C D E Freq Prob E(F) LC1 LC2 LC3 LC1* LC2* LC3*
0 0 0 0 0 1614 0.13 1614.00 A 0.836 0.209 0.582 0.798 0.067 0.506
1 0 0 0 0 594 0.05 594.00 B 0.801 0.163 0.390 0.742 0.114 0.313
0 1 0 0 0 375 0.03 375.00 C 0.741 0.010 0.314 0.709 0.010 0.129
1 1 0 0 0 262 0.02 262.00 D 0.957 0.300 0.805 0.946 0.214 0.661
0 0 1 0 0 89 0.01 89.00 E 0.594 0.035 0.273 0.549 0.028 0.129
1 0 1 0 0 109 0.01 93.36 θ 0.262 0.249 0.490 0.394 0.146 0.460
0 1 1 0 0 50 0.00 47.50 N* = 12297.7
1 1 1 0 0 99 0.01 84.22 π* = 0.063
0 0 0 1 0 1296 0.11 1296.00
1 0 0 1 0 1132 0.09 1132.00
0 1 0 1 0 568 0.05 568.00
1 1 0 1 0 810 0.07 810.00 Note:
0 0 1 1 0 335 0.02 222.13 G2  = 57.82
1 0 1 1 0 662 0.04 448.83
0 1 1 1 0 285 0.02 285.00
1 1 1 1 0 936 0.08 935.67
0 0 0 0 1 108 0.01 108.00
1 0 0 0 1 86 0.01 86.00
0 1 0 0 1 53 0.00 43.87
1 1 0 0 1 82 0.00 59.41
0 0 1 0 1 22 0.00 16.50
1 0 1 0 1 52 0.00 32.21
0 1 1 0 1 29 0.00 20.28
1 1 1 0 1 61 0.01 60.60
0 0 0 1 1 328 0.02 189.31
1 0 0 1 1 387 0.02 297.66
0 1 0 1 1 274 0.01 175.78
1 1 0 1 1 566 0.04 500.99
0 0 1 1 1 131 0.01 114.01
1 0 1 1 1 389 0.03 389.00
0 1 1 1 1 277 0.02 276.44
1 1 1 1 1 1066 0.09 1066.00

13127 1.00 12297.75
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Standard LCA:
Monotone but not 
doubly-monotone

*π LCA
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1 2 3 4 5 Freq* Prob* E(F) θ δ θ δ
0 0 0 0 0 1614 0.123 1614.00 -2.17 1.55 -1.88 1.42
1 0 0 0 0 594 0.023 300.74 -1.06 0.71 -1.15 0.81
0 1 0 0 0 375 0.010 129.50 -0.33 0.34 -0.43 0.30
1 1 0 0 0 262 0.009 113.11 0.72 3.01 0.59 2.40
0 0 1 0 0 89 0.007 89.00 2.63 0.00 2.49 0.00
1 0 1 0 0 109 0.006 77.74 -0.38 -0.35
0 1 1 0 0 50 0.003 33.47
1 1 1 0 0 99 0.004 55.63 Pi* = 0.128
0 0 0 1 0 1296 0.099 1296.00
1 0 0 1 0 1132 0.086 1132.00
0 1 0 1 0 568 0.037 487.43
1 1 0 1 0 810 0.062 810.00
0 0 1 1 0 335 0.026 335.00
1 0 1 1 0 662 0.042 556.70
0 1 1 1 0 285 0.018 239.71
1 1 1 1 0 936 0.062 814.19
0 0 0 0 1 108 0.005 61.87
1 0 0 0 1 86 0.004 54.04
0 1 0 0 1 53 0.002 23.27
1 1 0 0 1 82 0.003 38.67
0 0 1 0 1 22 0.001 15.99
1 0 1 0 1 52 0.002 26.58
0 1 1 0 1 29 0.001 11.44
1 1 1 0 1 61 0.003 38.87
0 0 0 1 1 328 0.018 232.88
1 0 0 1 1 387 0.029 387.00
0 1 0 1 1 274 0.013 166.64
1 1 0 1 1 566 0.043 566.00
0 0 1 1 1 131 0.009 114.53
1 0 1 1 1 389 0.030 389.00
0 1 1 1 1 277 0.013 167.50
1 1 1 1 1 1066 0.081 1066.00

13127 0.872 11444.48

MSPAP - Pi* for Rasch (1PL) Model
First 5 items from 17 item 

Pi* Solution Standard Solution
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Note: The Rasch model estimated by conditional MLE is equivalent to a
restricted latent class model. In particular for M items, a restricted LC
model with RE[M+.5)/2] classes provides the same fit as a Rasch model.
The restrictions on the LC model require that the item conditional
probabilities are ordered AND fall along parallel logistic functions. A
program incorporating these restrictions, PRASCH, described in Lindsay, 
Clogg and Grego (1991).  
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Third Example:

Self Report - Academic Cheating 
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Rasch Model fit to Cheating Items
    Parameter Estimates

Standard Two-Point
Cheating Item Rasch Model Mixture Standard Rasch Estimates
A B C D Freq E(Freq) G2 E(Freq) O δ PML δ
0 0 0 0 207 207.00 0.00 207.00 1 -4.48 -0.92 0.13
1 0 0 0 10 13.82 -3.24 10.00 2 -1.23 -0.77 -0.06
0 1 0 0 13 16.11 -2.79 13.00 3 -0.91 -1.54 0.82
1 1 0 0 11 2.95 14.48 0.85 4 -0.38 0.11 -0.90
0 0 1 0 7 7.40 -0.39 7.00 5 0.04 r = -0.999
1 0 1 0 1 1.35 -0.30 0.46
0 1 1 0 1 1.58 -0.46 0.59 Two-Point Mixture Estimates
1 1 1 0 1 0.79 0.24 0.43 O δ
0 0 0 1 46 38.67 7.99 46.00 1 0.44 -3.17
1 0 0 1 3 7.08 -2.58 3.00 2 -0.02 -2.90
0 1 0 1 4 8.25 -2.90 3.90 3 0.25 -3.52
1 1 0 1 4 4.12 -0.12 2.86 4 1.32 -1.64
0 0 1 1 5 3.79 1.39 2.10 5 1.94 r = 0.975
1 0 1 1 2 1.89 0.11 1.54 N* 302.73
0 1 1 1 2 2.20 -0.19 2.00
1 1 1 1 2 2.00 0.00 2.00

Total 319 319.00 22.50 302.73 π* = 0.051
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Fourth Example:

Continuous Variables
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L∞ regression and mixture index of fit
A. Low

ELTE Institute of Sociology, Hungary

“In a general case an n dimension regression subspace can only fit to n points, that is 
it can describe n points perfectly. In this case the view of mixture index of fit cannot 
be applied because an n dimension subspace can be fit to the subset with any n 
element of the observed points. This kind of decomposition cannot be divided into 
two parts arbitrary only into one part which has exactly n element in it and to an 
other part with the rest. All the above mentioned solutions does not lead to the 
description of the observed distribution.

For the decomposition of the observed distribution into two parts —one of them is 
based on the model and the other one is unrestricted— we have to forget the perfect 
fit of the model and therefore a new error term e must be again introduced.”

Unpublished manuscript found at: 

www.math.uni-klu.ac.at/stat/Tagungen/Ossiach/Low.pdf
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10+2X

LS Regression
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Correlations

1 .970**
. .000

50 50
.970** 1
.000 .

50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

SAT V

SAT Q

SAT V SAT Q

Correlation is significant at the 0.01 level
(2 t il d)

**. 

State Level Data from JSE

Correlations

1 .961**
. .000

50 50
.961** 1
.000 .

50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

satv2

satq2

satv2 satq2

Correlation is significant at the 0.01 level
(2 il d)

**. 

Original Scores

Dichotomized Scores

satv2 * satq2 Crosstabulation

Count

23 0 23
1 26 27

24 26 50

1.00
2.00

satv2

Total

1.00 2.00
satq2

Total

*ˆ: 1 1/ 50 .02H ρ π= = =
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Correlations

1 .970** .064 -.477**
. .000 .660 .000

50 50 50 50
.970** 1 .095 -.401**
.000 . .510 .004

50 50 50 50
.064 .095 1 -.001
.660 .510 . .994

50 50 50 50
-.477** -.401** -.001 1
.000 .004 .994 .

50 50 50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

SAT V

SAT Q

P/T ratio

T SALARY

SAT V SAT Q P/T ratio T SALARY

Correlation is significant at the 0.01 level (2-tailed).**. 
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Correlations

1 .961** .157 -.441**
. .000 .275 .001

50 50 50 50
.961** 1 .199 -.400**
.000 . .167 .004

50 50 50 50
.157 .199 1 .160
.275 .167 . .267

50 50 50 50
-.441** -.400** .160 1
.001 .004 .267 .

50 50 50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

satv2

satq2

ptratio2

tsalary2

satv2 satq2 ptratio2 tsalary2

Correlation is significant at the 0.01 level (2-tailed).**. 
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satv2 * tsalary2 Crosstabulation

Count

6 17 23
19 8 27
25 25 50

1.00
2.00

satv2

Total

1.00 2.00
tsalary2

Total

satv2 * ptratio2 Crosstabulation

Count

13 10 23
11 16 27
24 26 50

1.00
2.00

satv2

Total

1.00 2.00
ptratio2

Total

*ˆ: 1 14 / 50 .28H ρ π= − = =

*ˆ: (13 15 10 11) /(13 50)
85 / 650 .13

H oρ π= = × − × ×
= =
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Summary
• *π is a widely applicable model-fit index for models based 

on frequency data. 
 

• *π has a simple and intuitive interpretation in terms of 
deleted observations. 

 
• *π is easy to compute only for very simple cases such as 

2x2 contingency tables. 
 

• *π may be generalized to models based on continuous data 
but this requires an arbitrary recoding of data into 
categories. 

 
• Unresolved issues with *π include (a) efficient 

computational approaches; (b) effectiveness of different 
approaches for dealing with 0 observed frequencies; (c) 
efficient methods for assessing sampling variability. 
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