

1

Two-Point Mixture Index of Fit

Let P be the "true" distribution for the cell proportions in a frequency table. Rudas, Clogg and Lindsay (1994) {RCL hereafter} propose a two-point mixture model:

$$P = (1 - \pi) \cdot \Phi + \pi \cdot \Psi$$
[1]

3

4

where

 Φ = probability distribution implied by probabilistic model, H Ψ = an arbitrary, unspecified probability distribution $0 \le \pi \le 1$ = proportion of the population not consistent with H

May 2006 CILVR Conference

May 2006 CILVR Conference

Estimating π^*	
MLE: A method suggested by RCL entrails a guided search that, at each s sets the value of π^* and derives maximum likelihood estimates (MLE's) of the parameters in the components of Equation (1) using an EM algorithm. The process can start with a small value (e.g., .005) and increment by a sm constant (e.g., .005) with re-estimation at each step. At some step (and bey the value of the likelihood-ratio chi-square fit statistic, G ² , becomes (nearly) this is the final estimate of the fit index. See RCL for details.	tep, all ond), 0 and
NLP: Non-linear programming is a directed-search technique first recomme by Xi (1994) and Xi & Lindsay (1996). For relatively simple applications, the SOLVER procedure in Excel (with some tweaking) can be used as illustrate this presentation (see Dayton, 2002, for details). NLP routines are available SAS, Gauss, etc.	ended ed in ed in
May 2006 CILVR Conference	9

NLP Computing Steps for Frequency Data - cont'd

Define the objective function to be maximized as the sum of the expected frequencies, $\sum_{j=1}^{J} n_j^*$; in Microsoft Excel Solver, this is called the *Target Cell*; at convergence of the NLP algorithm,

$$\hat{\pi}^* = 1 - \sum_{j=1}^J n_j^* / N$$

NOTE: These steps can be implemented using, for example, Excel Solver or Gauss sqpsolve routine. See Dayton (1999, 2002) for more details.

May 2006 CILVR Conference

11

Estimating a Lower Bound for the Two-Point Mixture Index

The estimate, $\hat{\pi}^*$, is subject to random fluctuation due to the peculiarities of sample data. In general, $\hat{\pi}^*$ may overestimate lack of fit. RCL derived a lower confidence bound, $\hat{\pi}_L$, based on a G^2 fit statistic equal to 2.70 (i.e., the 90th percentage point of the chi-square distribution with one degree of freedom). Their program, Mixit, can be used to find the lower limit by the same iterative procedure used to compute $\hat{\pi}^*$. The confidence interval is one-sided since all values of $\hat{\pi}$ greater than $\hat{\pi}^*$ yield models of the form of equation [1] that fit the observed frequencies perfectly (i.e., $G^2=0$ if $\hat{\pi} > \hat{\pi}^*$). For more general data situations than those that can be fit by Mixit, the standard error of $\hat{\pi}^*$ can be estimated using re-sampling techniques (e.g., the jackknife; see Dayton, 1999, Dayton 2002). Clogg, Rudas & Xi (1995) suggest that the difference, $\hat{\pi}^* - \hat{\pi}_L$, provides a measure of the effect of sample size on the estimator, $\hat{\pi}^*$. May 2006 CILVR Conference

Guidelines (?)

There is no general guideline for interpreting the two-point mixture index but, intuitively, values of 10% to 5% or less seem small. RCL remark that 10% is "reasonable" for a specific 4x4 cross-classification table but there is no absolute standard for the index that represents acceptable fit in all settings. In particular, 10% for the first example in the RCL paper represents only about 59 respondents whereas it represents about 2526 respondents for their second example.

May 2006 CILVR Conference

13

Note on 0 Observed Frequencies

Fr an independence model in a two-way contingency table, the existence of a 0 observed frequency in a cell requires that a corresponding row or column proportion be equation to 0. In effect, this creates 0 expected frequencies for the entire row or column. Among the approaches for avoiding this undesirable result are: (a) replace 0 cell frequencies with small, flattening values (e.g., .1 or .5); or, (b) treat the 0 as a structural 0 and explicitly model the structure.

May 2006 CILVR Conference

14

		GSS Num	ber of Sib	lings Data				Τ
		Single Po	isson Proc	cess				
	Observ	/ed	Single	Poisson	Two-Poin	t Mixture		+
# Sibs	Freq	Prop	E(Prop)	E(Freq)	E(Prop)	E(Freq)		Т
0	74	0.049	0.020	29.56	0.069	74.00		Т
1	235	0.156	0.077	116.19	0.184	198.21		Т
2	276	0.183	0.152	228.30	0.246	265.45		Т
3	237	0.157	0.199	299.08	0.220	237.00		Т
4	209	0.139	0.195	293.84	0.147	158.70		Т
5	118	0.078	0.153	230.96	0.079	85.02		Τ
6	80	0.053	0.101	151.28	0.035	37.95		Т
7	81	0.054	0.056	84.93	0.014	14.52		Т
8	58	0.039	0.028	41.72	0.005	4.86		Т
9	47	0.031	0.012	18.22	0.001	1.45		Т
10	34	0.023	0.005	7.16	0.000	0.39		Т
11+	56	0.037	0.002	3.74	0.000	0.12		Т
	1505	1.000	1.000	1505.00	1.000	1077.66		Т
			G ² =	586.962	$\hat{\pi}^* =$	0.284	$\hat{\pi}_{\scriptscriptstyle L}^*$ =	0
			λ =	3.93	$\lambda =$	2.68		t

ackknife	SE						
# Sibs	Count	Prop	PoissP*	E(Freq)	J(π*)	Wt(SS)	
0	74	0.049	0.069	74.00	0.2845	2.22E-05	
1	235	0.156	0.184	198.21	0.2835	5.33E-05	
2	276	0.183	0.246	265.45	0.2835	6.26E-05	
3	237	0.157	0.220	237.00	0.2862	0.00117	
4	209	0.139	0.147	158.70	0.2835	4.74E-05	
5	118	0.078	0.079	85.02	0.2835	2.67E-05	
6	80	0.053	0.035	37.95	0.2835	1.81E-05	
7	81	0.054	0.013	14.52	0.2835	1.84E-05	
8	58	0.039	0.005	4.86	0.2835	1.31E-05	
9	47	0.031	0.001	1.45	0.2835	1.07E-05	
10	34	0.023	0.000	0.39	0.2835	7.71E-06	
11+	56	0.037	0.000	0.12	0.2835	1.27E-05	
	1505	1.000	1.000	1077.66		0.00146	= VAR(J)
				$\pi^* =$	0.2839	0.0382	= SE(J)

		GSS Num	ber of Sib	lings Data				
		Mixture of	i Two Pois	sons				
	Observ	/ed	Mixture	2 Poissons	Two-Poin	t Mixture		
# Sibs	Freq	Prop	E(Prop)	E(Freq)	E(Prop)	E(Freq)		
0	74	0.049	0.054	80.70	0.054	74.00		
1	235	0.156	0.142	213.84	0.142	195.76		
2	276	0.183	0.190	285.35	0.189	260.94		
3	237	0.157	0.172	259.13	0.172	236.99		
4	209	0.139	0.124	186.69	0.124	171.21		
5	118	0.078	0.082	123.04	0.082	113.58		
6	80	0.053	0.057	85.98	0.058	80.00		
7	81	0.054	0.045	67.96	0.046	63.42		
8	58	0.039	0.038	57.11	0.038	53.11		
9	47	0.031	0.031	46.85	0.031	43.25		
10	34	0.023	0.024	35.88	0.024	32.84		
11+	56	0.037	0.042	62.46	0.041	56.00		
	1505	1.000	1.000	1505.00	1.000	1381.09		
			G ² =	11.221	π* =	0.081	π*L =	0.01
			λ =	2.64, 7.81	λ =	2.63, 7.74		
			θ =	.75, .25	θ =	.75, .25		

									Standard LCA	۱ I		π* Solution		
A	в	С	D	E	Freq	Prob	E(F)		LC1	LC2	LC3	LC1*	LC2*	LC3*
0	0	0	0	0	1614	0.13	1614.00	Α	0.836	0.209	0.582	0.798	0.067	0.506
1	0	0	0	0	594	0.05	594.00	В	0.801	0.163	0.390	0.742	0.114	0.313
0	1	0	0	0	375	0.03	375.00	С	0.741	0.010	0.314	0.709	0.010	0.129
1	1	0	0	0	262	0.02	262.00	D	0.957	0.300	0.805	0.946	0.214	0.661
0	0	1	0	0	89	0.01	89.00	E	0.594	0.035	0.273	0.549	0.028	0.129
1	0	1	0	0	109	0.01	93.36	θ	0.262	0.249	0.490	0.394	0.146	0.460
0	1	1	0	0	50	0.00	47.50				N* =	12297.7		
1	1	1	0	0	99	0.01	84.22				π* =	0.063		
0	0	0	1	0	1296	0.11	1296.00							
1	0	0	1	0	1132	0.09	1132.00							
0	1	0	1	0	568	0.05	568.00							
1	1	0	1	0	810	0.07	810.00		Note:					
0	0	1	1	0	335	0.02	222.13		G ² =	57.82				
1	0	1	1	0	662	0.04	448.83							
0	1	1	1	0	285	0.02	285.00							
1	1	1	1	0	936	0.08	935.67							
0	0	0	0	1	108	0.01	108.00							
1	0	0	0	1	86	0.01	86.00							
0	1	0	0	1	53	0.00	43.87							
1	1	0	0	1	82	0.00	59.41							
0	0	1	0	1	22	0.00	16.50							
1	0	1	0	1	52	0.00	32.21							
0	1	1	0	1	29	0.00	20.28							
1	1	1	0	1	61	0.01	60.60							
0	0	0	1	1	328	0.02	189.31							
1	0	0	1	1	387	0.02	297.66							
0	1	0	1	1	274	0.01	175.78							
1	1	0	1	1	566	0.04	500.99							
0	0	1	1	1	131	0.01	114.01							
1	0	1	1	1	389	0.03	389.00							
0	1	1	1	1	277	0.02	276.44							
1	1	1	1	1	1066	0.09	1066.00							
					13127	1.00	12297.75							

				ie iii							
								Pi* Solu	ution	Standard	Solution
1	2	3	4	5	Freq*	Prob*	E(F)	θ	δ	θ	δ
0	0	0	0	0	1614	0.123	1614.00	-2.17	1.55	-1.88	1.42
1	0	0	0	0	594	0.023	300.74	-1.06	0.71	-1.15	0.81
0	1	0	0	0	375	0.010	129.50	-0.33	0.34	-0.43	0.30
1	1	0	0	0	262	0.009	113.11	0.72	3.01	0.59	2.40
0	0	1	0	0	89	0.007	89.00	2.63	0.00	2.49	0.00
1	0	1	0	0	109	0.006	77.74	-0.38		-0.35	
0	1	1	0	0	50	0.003	33.47				
1	1	1	0	0	99	0.004	55.63	Pi* =	0.128		
0	0	0	1	0	1296	0.099	1296.00				
1	0	0	1	0	1132	0.086	1132.00				
0	1	0	1	0	568	0.037	487.43				
1	1	0	1	0	810	0.062	810.00				
0	0	1	1	0	335	0.026	335.00				
1	0	1	1	0	662	0.042	556.70				
0	1	1	1	0	285	0.018	239.71				
1	1	1	1	0	936	0.062	814.19				
0	0	0	0	1	108	0.005	61.87				
1	0	0	0	1	86	0.004	54.04				
0	1	0	0	1	53	0.002	23.27				
1	1	0	0	1	82	0.003	38.67				
0	0	1	0	1	22	0.001	15.99				
1	0	1	0	1	52	0.002	26.58				
0	1	1	0	1	29	0.001	11.44				
1	1	1	0	1	61	0.003	38.87				
0	0	0	1	1	328	0.018	232.88				
1	0	0	1	1	387	0.029	387.00				
0	1	0	1	1	274	0.013	166.64				
1	1	0	1	1	566	0.043	566.00				
0	0	1	1	1	131	0.009	114.53				
1	0	1	1	1	389	0.030	389.00				
0	1	1	1	1	277	0.013	167.50				
1	1	1	1	1	1066	0.081	1066.00				
					13127	0.872	11444.48				

Note: The Rasch model estimated by conditional MLE is equivalent to a restricted latent class model. In particular for M items, a restricted LC model with RE[M+.5)/2] classes provides the same fit as a Rasch model. The restrictions on the LC model require that the item conditional probabilities are ordered AND fall along parallel logistic functions. A program incorporating these restrictions, PRASCH, described in Lindsay, Clogg and Grego (1991).

May 2006 CILVR Conference

27

					Rasch Mod	el fit to	Ch	neating Iten	ns				
										Param	eter Estim	ates	
					Standard			Two-Point					
CI	heat	ting	ltem	1 I	Rasch Mod	el		Mixture		Standard	Rasch Est	imates	
Α	в	С	D	Freq	E(Freq)	G ²		E(Freq)		Ð	δ		PMLδ
С) (0 0	0	207	207.00	0.00		207.00	1	-4.48	-0.92	!	0.13
1	0	0 0	0	10	13.82	-3.24		10.00	2	-1.23	-0.77	·	-0.06
С) 1	1 0	0	13	16.11	-2.79		13.00	3	-0.91	-1.54		0.82
1	1	1 0	0	11	2.95	14.48		0.85	4	-0.38	0.11		-0.90
С) () 1	0	7	7.40	-0.39		7.00	5	0.04		r =	-0.999
1	0) 1	0	1	1.35	-0.30		0.46					
С	1	1 1	0	1	1.58	-0.46		0.59		Two-Poin	t Mixture	Estimates	
1	1	1 1	0	1	0.79	0.24		0.43		0	δ		
С) (0 0	1	46	38.67	7.99		46.00	1	0.44	-3.17		
1	0	0 0	1	3	7.08	-2.58		3.00	2	-0.02	-2.90)	
С	1	1 0	1	4	8.25	-2.90		3.90	3	0.25	-3.52	!	
1	1	1 0	1	4	4.12	-0.12		2.86	4	1.32	-1.64		
С) () 1	1	5	3.79	1.39		2.10	5	1.94		r =	0.97
1) 1	1	2	1.89	0.11		1.54	N*	302.73			
С) 1	1 1	1	2	2.20	-0.19		2.00					
1	1	1 1	1	2	2.00	0.00		2.00					
		То	tal	319	319.00	22.50		302.73	π* =	0.051			

		SAT V	SAT Q	P/T ratio	T SALARY
SAT V	Pearson Correlation	1	.970**	.064	477**
	Sig. (2-tailed)		.000	.660	.000
	Ν	50	50	50	50
SAT Q	Pearson Correlation	.970**	1	.095	401**
	Sig. (2-tailed)	.000		.510	.004
	Ν	50	50	50	50
P/T ratio	Pearson Correlation	.064	.095	1	001
	Sig. (2-tailed)	.660	.510		.994
	Ν	50	50	50	50
T SALARY	Pearson Correlation	477**	401**	001	1
	Sig. (2-tailed)	.000	.004	.994	
	Ν	50	50	50	50
**. Corre	lation is significant at the	- 0 01 level (2	-tailed)		•

satv2			Salyz	ptratio2	tsalary2
04112	Pearson Correlation	1	.961**	.157	441*
	Sig. (2-tailed)		.000	.275	.001
	Ν	50	50	50	50
satq2	Pearson Correlation	.961**	1	.199	400*
	Sig. (2-tailed)	.000		.167	.004
	Ν	50	50	50	50
ptratio2	Pearson Correlation	.157	.199	1	.160
	Sig. (2-tailed)	.275	.167		.267
	Ν	50	50	50	50
tsalary2	Pearson Correlation	441**	400**	.160	1
	Sig. (2-tailed)	.001	.004	.267	
	Ν	50	50	50	50

<section-header><section-header><text><text><list-item><list-item><list-item><list-item>